Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Metabolites ; 13(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37512512

RESUMO

Lichens are symbiotic organisms composed of at least one fungal and one algal species. They are found in different environments around the world, even in the poles and deserts. Some species can withstand extreme abiotic conditions, including radiation and the vacuum of space. Their chemistry is mainly due to the fungal metabolism and the production of several secondary metabolites with biological activity, which have been isolated due to an increasing interest from the pharmaceutical community. However, beyond the experimental data, little is known about their mechanisms of action and the potential pharmaceutical use of these kinds of molecules, especially the ones isolated from lesser-known species and/or lesser-studied countries. The main objective of this review is to analyze the bibliographical data of the biological activity of secondary metabolites from lichens, identifying the possible mechanisms of action and lichen species from Chile. We carried out a bibliographic revision of different scientific articles in order to collect all necessary information on the biological activity of the metabolites of these lichen species. For this, validated databases were used. We found the most recent reports where in vitro and in vivo studies have demonstrated the biological properties of these metabolites. The biological activity, namely anticancer, antioxidant, and anti-inflammatory activity, of 26 secondary metabolites are described, as well as their reported molecular mechanisms. The most notable metabolites found in this review were usnic acid, atranorin, protolichesterinic acid, and lobaric acid. Usnic acid was the most investigated metabolite, in addition to undergoing toxicological and pharmacological studies, where a hepatotoxicity effect was reported due to uncoupling oxidative phosphorylation. Additionally, no major studies have been made to validate the pharmacological application of these metabolites, and few advancements have been made in their artificial growth in bioreactors. Despite the described biological activities, there is little support to consider these metabolites in pharmaceutical formulations or to evaluate them in clinical trials. Nevertheless, it is important to carry out further studies regarding their possible human health effects. These lichen secondary metabolites present a promising research opportunity to find new pharmaceutical molecules due to their bioactive properties.

2.
Pharmaceutics ; 15(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986757

RESUMO

Medicinal plants have been used since prehistoric times and continue to treat several diseases as a fundamental part of the healing process. Inflammation is a condition characterized by redness, pain, and swelling. This process is a hard response by living tissue to any injury. Furthermore, inflammation is produced by various diseases such as rheumatic and immune-mediated conditions, cancer, cardiovascular diseases, obesity, and diabetes. Hence, anti-inflammatory-based treatments could emerge as a novel and exciting approach to treating these diseases. Medicinal plants and their secondary metabolites are known for their anti-inflammatory properties, and this review introduces various native Chilean plants whose anti-inflammatory effects have been evaluated in experimental studies. Fragaria chiloensis, Ugni molinae, Buddleja globosa, Aristotelia chilensis, Berberis microphylla, and Quillaja saponaria are some native species analyzed in this review. Since inflammation treatment is not a one-dimensional solution, this review seeks a multidimensional therapeutic approach to inflammation with plant extracts based on scientific and ancestral knowledge.

3.
Plants (Basel) ; 12(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36840114

RESUMO

Chilling injury is a physiological disorder caused by cold storage in peaches and nectarines. The main symptom of chilling injury is mealiness/wooliness, described as a lack of juice in fruit flesh. In this work, we studied two nectarine varieties (Andes Nec-2 and Andes Nec-3) with contrasting susceptibility to mealiness after cold storage. A non-targeted metabolomic analysis was conducted by GC-MS to understand if changes in metabolite abundance are associated with nectarine mealiness induced by cold storage. Multivariate analyses indicated that in unripe nectarines, cold storage promoted a higher accumulation of amino acids in both varieties. Interestingly, for ripe nectarines, cold storage induced an accumulation of fewer amino acids in both varieties and showed an increased abundance of sugars and organic acids. A pathway reconstruction of primary metabolism revealed that in ripe nectarines, cold storage disrupted metabolite abundance in sugar metabolism and the TCA cycle, leading to a differential accumulation of amino acids, organic acids, and sugars in mealy and juicy nectarines.

4.
Plants (Basel) ; 11(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36501269

RESUMO

Algae and microalgae are used as a source of different biomolecules, such as lipids and carbohydrates. Among carbohydrates, polysaccharides, such as ß-glucans, are important for their application as antioxidants, antisepsis, and immunomodulators. In the present work, the ß-glucans production potential of Microchloropsis salina was assessed using two different culture conditions: a high-density batch and a modeled high-density fed-batch. From the biochemical parameters determined from these two cultures conditions, it was possible to establish that the modeled high-density fed-batch culture improves the biomass growth. It was possible to obtain a biomass productivity equal to 8.00 × 10-2 ± 2.00 × 10-3 g/(L × day), while the batch condition reached 5.13 × 10-2 ± 4.00 × 10-4 g/(L × day). The same phenomenon was observed when analyzing the ß-glucans accumulation, reaching volumetric productivity equal to 5.96 × 10-3 ± 2.00 × 10-4 g of product/(L × day) against the 4.10 × 10-3 ± 2.00 × 10-4 g of product/(L × day) obtained in batch conditions. These data establish a baseline condition to optimize and significantly increase ß-glucan productivity, as well as biomass, adding a new and productive source of this polymer, and integrating its use in potential applications in the human and animal nutraceutical industry.

5.
Food Chem ; 389: 133052, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35489260

RESUMO

Tissue texture influences the grape berry consumers acceptance. We studied the biological differences between the inner and outer mesocarp tissues in hard and soft berries of table grapes cv NN107. Texture analysis revealed lower levels of firmness in the inner mesocarp as compared with the outer tissue. HPAEC-PAD analysis showed an increased abundance of cell wall monosaccharides in the inner mesocarp of harder berries at harvest. Immunohistochemical analysis displayed differences in homogalacturonan methylesterification and cell wall calcium between soft and hard berries. This last finding correlated with a differential abundance of calcium measured in the alcohol-insoluble residues (AIR) of the inner tissue of the hard berries. Analysis of abundance of polar metabolites suggested changes in cell wall carbon supply precursors, providing new clues in the identification of the biochemical factors that define the texture of the mesocarp of grape berries.


Assuntos
Vitis , Cálcio/metabolismo , Parede Celular/química , Frutas/metabolismo , Metabolômica , Vitis/química
6.
Front Plant Sci ; 12: 755447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868142

RESUMO

The endoplasmic reticulum (ER) is the organelle where one third of the proteins of a cell are synthetized. Several of these proteins participate in the signaling and response of cells, tissues, or from the organism to the environment. To secure the proper synthesis and folding of these proteins, or the disposal of unfolded or misfolded proteins, the ER has different mechanisms that interact and regulate each other. These mechanisms are known as the ER quality control (ERQC), ER-associated degradation (ERAD) and the unfolded protein response (UPR), all three participants of the maintenance of ER protein homeostasis or proteostasis. Given the importance of the client proteins of these ER mechanisms in the plant response to the environment, it is expected that changes or alterations on their components have an impact on the plant response to environmental cues or stresses. In this mini review, we focus on the impact of the alteration of components of ERQC, ERAD and UPR in the plant response to abiotic stresses such as drought, heat, osmotic, salt and irradiation. Also, we summarize findings from recent publications looking for a connection between these processes and their possible client(s) proteins. From this, we observed that a clear connection has been established between the ERAD and UPR mechanisms, but evidence that connects ERQC components to these both processes or their possible client(s) proteins is still lacking. As a proposal, we suggest the use of proteomics approaches to uncover the identity of these proteins and their connection with ER proteostasis.

7.
Plants (Basel) ; 10(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809443

RESUMO

The firmness of blueberry is one of its most significant quality attributes. Modifications in the composition of the cell wall have been associated with changes in the fruit firmness. In this work, cell wall components and calcium concentration in two blueberry cultivars with contrasting firmness phenotypes were evaluated at harvest and 30 days cold storage (0 °C). High performance anion-exchange chromatography with pulse amperometric detector (HPAEC-PAD) analysis was performed using the "Emerald" (firmer) and "Jewel" (softer) blueberry cultivars, showing increased glucose in the firmer cultivar after cold storage. Moreover, the LM15 antibody, which recognizes xyloglucan domains, displayed an increased signal in the Emerald cultivar after 30 d cold storage. Additionally, the antibody 2F4, recognizing a homogalacturonan calcium-binding domain, showed a greater signal in the firmer Emerald blueberries, which correlates with a higher calcium concentration in the cell wall. These findings suggest that xyloglucan metabolism and a higher concentration of cell wall calcium influenced the firmness of the blueberry fruit. These results open new perspectives regarding the role of cell wall components as xyloglucans and calcium in blueberry firmness.

8.
Plant Sci ; 277: 242-250, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30466590

RESUMO

Plants must defend themselves against pathogens. The defense response requires greater protein synthesis, which generates endoplasmic reticulum (ER) stress, yet failure to attenuate this stress has detrimental effects. WRKY7/11/17 transcription factors (TFs) are negative regulators of immunity since mutants are more resistant to Pseudomonas syringae pv tomato (Pst) infection. Here, we reveal a connection between ER-stress and the molecular mechanisms underlying the wrky mutant phenotype. The bZIP28 TF upregulates ER-chaperone expression (BiP1/2, ERdj3B, and SDF2) upon exposure of Arabidopsis to a bacterial defense elicitor, flagellin 22 (Flg22). Also, the activation of ER-chaperones is more sustained in double and triple wrky mutants treated with Flg22, suggesting that WRKY7/11/17 TFs downregulate these genes. Moreover, wrky mutants accumulate more bZIP28 transcripts in response to Flg22, indicating that WRKY7/11/17 transcriptionally repress this TF. Using Arabidopsis protoplasts, we also demonstrate that WRKYs bind to the bZIP28 promoter via W-box elements. Additionally, triple wrky mutants are more resistant, whilst bzip28 mutants are more susceptible, to Pst infection. Finally, we postulate a model of PAMP-Triggered Immunity regulation, where Flg22 activates bZIP28-signaling inducing the expression of ER-stress genes, as well as WRKY7/11/17 expression, which in turn inhibits PTI by downregulating bZIP28, controlling physiological responses in the Arabidopsis-Pst interaction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Pseudomonas syringae/patogenicidade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/fisiologia
9.
Food Chem ; 268: 492-497, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30064789

RESUMO

Firm berries are highly appreciated by table grape consumers. Cell wall composition is one of the main factors influencing the firmness of table grape berries. Nevertheless, the biological factors driving changes in berry firmness remain unclear. In the present work, we evaluated the firmness of berries of Vitis vinifera cv. Thompson Seedless. We selected two orchards displaying contrasting berry firmness and evaluated polar metabolites and cell wall composition. Our results suggest that berries from the soft orchard exhibited a higher accumulation of sugars at veraison whereas berries from the hard orchard accumulated the same sugars at harvest plus a higher amount of glucose monosaccharide at the cell wall. Thus, this study opens new insights about a connection between metabolic and cell wall changes with fruit firmness in a table grape variety, suggesting that it is possible to use metabolomic tools to identify metabolic biomarkers associated with table grape berry firmness.


Assuntos
Parede Celular/química , Vitis/química , Frutas , Metabolômica
10.
J Cell Biochem ; 119(8): 6857-6868, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29693271

RESUMO

Low temperatures, salinity, and drought cause significant crop losses. These conditions involve osmotic stress, triggering transcriptional remodeling, and consequently, the restitution of cellular homeostasis and growth recovery. Protein transcription factors regulate target genes, thereby mediating plant responses to stress. bZIP17 is a transcription factor involved in cellular responses to salinity and the unfolded protein response. Because salinity can also produce osmotic stress, the role of bZIP17 in response to osmotic stress was assessed. Mannitol treatments induced the transcript accumulation and protein processing of bZIP17. Transcriptomic analyses showed that several genes associated with seed storage and germination showed lower expression in bzip17 mutants than in wild-type plants. Interestingly, bZIP17 transcript was more abundant in seeds, and germination analyses revealed that wild-type plants germinated later than bzip17 mutants in the presence of mannitol, but no effects were observed when the seeds were exposed to ABA. Finally, the transcript levels of bZIP17 target genes that control seed storage and germination were assessed in seeds exposed to mannitol treatments, which showed lower expression levels in bzip17 mutants compared to the wild-type seeds. These results suggest that bZIP17 plays a role in osmotic stress, acting as a negative regulator of germination through the regulation of genes involved in seed storage and germination.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/fisiologia , Pressão Osmótica/fisiologia , Sementes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sementes/genética
11.
Plant Sci ; 266: 46-54, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29241566

RESUMO

Cherimoya (Annona cherimola) is an exotic fruit with attractive organoleptic characteristics. However, it is highly perishable and susceptible to postharvest browning. In fresh fruit, browning is primarily caused by the polyphenol oxidase (PPO) enzyme catalyzing the oxidation of o-diphenols to quinones, which polymerize to form brown melanin pigment. There is no consensus in the literature regarding a specific role of PPO, and its subcellular localization in different plant species is mainly described within plastids. The present work determined the subcellular localization of a PPO protein from cherimoya (AcPPO). The obtained results revealed that the AcPPO- green fluorescent protein co-localized with a Golgi apparatus marker, and AcPPO activity was present in Golgi apparatus-enriched fractions. Likewise, transient expression assays revealed that AcPPO remained active in Golgi apparatus-enriched fractions obtained from tobacco leaves. These results suggest a putative function of AcPPO in the Golgi apparatus of cherimoya, providing new perspectives on PPO functionality in the secretory pathway, its effects on cherimoya physiology, and the evolution of this enzyme.


Assuntos
Annona/genética , Catecol Oxidase/genética , Expressão Gênica , Proteínas de Plantas/genética , Annona/metabolismo , Catecol Oxidase/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Microscopia Confocal , Proteínas de Plantas/metabolismo , /metabolismo
12.
BMC Plant Biol ; 15: 127, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26017403

RESUMO

BACKGROUND: UDP-glucose: glycoprotein glucosyltransferase (UGGT) is a key player in the quality control mechanism (ER-QC) that newly synthesized glycoproteins undergo in the ER. It has been shown that the UGGT Arabidopsis orthologue is involved in ER-QC; however, its role in plant physiology remains unclear. RESULTS: Here, we show that two mutant alleles in the At1g71220 locus have none or reduced UGGT activity. In wild type plants, the AtUGGT transcript levels increased upon activation of the unfolded protein response (UPR). Interestingly, mutants in AtUGGT exhibited an endogenous up-regulation of genes that are UPR targets. In addition, mutants in AtUGGT showed a 30% reduction in the incorporation of UDP-Glucose into the ER suggesting that this enzyme drives the uptake of this substrate for the CNX/CRT cycle. Plants deficient in UGGT exhibited a delayed growth rate of the primary root and rosette as well as an alteration in the number of leaves. These mutants are more sensitive to pathogen attack as well as heat, salt, and UPR-inducing stressors. Additionally, the plants showed impairment in the establishment of systemic acquired resistance (SAR). CONCLUSIONS: These results show that a lack of UGGT activity alters plant vegetative development and impairs the response to several abiotic and biotic stresses. Moreover, our results uncover an unexpected role of UGGT in the incorporation of UDP-Glucose into the ER lumen in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Retículo Endoplasmático/metabolismo , Glucosiltransferases/metabolismo , Desenvolvimento Vegetal , Estresse Fisiológico , Adaptação Fisiológica/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Estresse do Retículo Endoplasmático , Genes de Plantas , Mutação/genética , Frações Subcelulares/enzimologia , Resposta a Proteínas não Dobradas
13.
PLoS One ; 10(4): e0122936, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25860807

RESUMO

The unfolded protein response (UPR) is a signaling pathway that is activated when the workload of the endoplasmic reticulum (ER) is surpassed. IRE1 is a sensor involved in triggering the UPR and plays a key role in the unconventional splicing of an mRNA leading to the formation of a transcription factor that up-regulates the transcription of genes that play a role in restoring the homeostasis in the ER. In plants, bZIP60 is the substrate for IRE1; however, questions such as what is the dynamics of the splicing of bZIP60 and the fate of the proteins encoded by the spliced and unspliced forms of the mRNA, remain unanswered. In the present work, we analyzed the processing of bZIP60 by determining the levels of the spliced form mRNA in plants exposed to different conditions that trigger UPR. The results show that induction of ER stress increases the content of the spliced form of bZIP60 (bZIP60s) reaching a maximum, that depending on the stimuli, varied between 30 min or 2 hrs. In most cases, this was followed by a decrease in the content. In contrast to other eukaryotes, the splicing never occurred to full extent. The content of bZIP60s changed among different organs upon induction of the UPR suggesting that splicing is regulated differentially throughout the plant. In addition, we analyzed the distribution of a GFP-tagged version of bZIP60 when UPR was activated. A good correlation between splicing of bZIP60 and localization of the protein in the nucleus was observed. No fluorescence was observed under basal conditions, but interestingly, the fluorescence was recovered and found to co-localize with an ER marker upon treatment with an inhibitor of the proteasome. Our results indicate that the dynamics of bZIP60, both the mRNA and the protein, are highly dynamic processes which are tissue-specific and stimulus-dependent.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Splicing de RNA , RNA Mensageiro/metabolismo , Resposta a Proteínas não Dobradas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Núcleo Celular/metabolismo , Ditiotreitol/farmacologia , Eletroforese Capilar , Retículo Endoplasmático/metabolismo , Flores/genética , Flores/metabolismo , Manitol/farmacologia , Microscopia Confocal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido Salicílico/farmacologia , Cloreto de Sódio/farmacologia , Espectrometria de Fluorescência , Temperatura , Ativação Transcricional , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
14.
J Cell Biochem ; 116(8): 1638-45, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25704669

RESUMO

Plants can be severely affected by salt stress. Since these are sessile organisms, they have developed different cellular responses to cope with this problem. Recently, it has been described that bZIP17 and bZIP60, two ER-located transcription factors, are involved in the cellular response to salt stress. On the other hand, bZIP60 is also involved in the unfolded protein response (UPR), a signaling pathway that up-regulates the expression of ER-chaperones. Coincidentally, salt stress produces the up-regulation of BiP, one of the main chaperones located in this organelle. Then, it has been proposed that UPR is associated to salt stress. Here, by using insertional mutant plants on bZIP17 and bZIP60, we show that bZIP17 regulate the accumulation of the transcript for the chaperone BiP3 under salt stress conditions, but does not lead to the accumulation of UPR-responding genes such as the chaperones Calnexin, Calreticulin, and PDIL under salt treatments. In contrast, DTT, a known inducer of UPR, leads to the up-regulation of all these chaperones. On the other hand, we found that bZIP60 regulates the expression of some bZIP17 target genes under conditions were splicing of bZIP60 does not occur, suggesting that the spliced and unspliced forms of bZIP60 play different roles in the physiological response of the plant. Our results indicate that the ER-located transcription factors bZIP17 and bZIP60 play a role in salt stress but this response goes through a signaling pathway that is different to that triggered by the unfolded protein response.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição de Zíper de Leucina Básica/genética , Chaperonas Moleculares/genética , Processamento Alternativo , Arabidopsis/metabolismo , Ditiotreitol/farmacologia , Regulação da Expressão Gênica de Plantas , Salinidade , Estresse Fisiológico , Resposta a Proteínas não Dobradas/efeitos dos fármacos
15.
PLoS One ; 7(2): e31944, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22359644

RESUMO

Endoplasmic reticulum (ER)-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR), is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR) proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA). However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR), whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm)-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent functions in plant immunity.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Endorribonucleases/fisiologia , Imunidade Vegetal , Proteínas Quinases/fisiologia , Resposta a Proteínas não Dobradas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Endorribonucleases/genética , Isoformas de Proteínas , Proteínas Quinases/genética , Fatores de Transcrição , Ativação Transcricional/imunologia
16.
Biol Res ; 44(1): 75-80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21720684

RESUMO

Unfolded protein response (UPR) is a signaling mechanism activated by misfolded protein accumulation in the endoplasmic reticulum. It is a widespread process that has been described in organisms ranging from yeasts to mammals. In recent years, our understanding of UPR signaling pathway in plants has advanced. Two transcription factors from Arabidopsis thaliana have been reported to function as the sensor/ transducer of this response (AtbZIP60 and AtbZIP28). They seem to be involved in both heat and biotic stress. Furthermore, overexpression of one of them (AtbZIP60) produces plants with a higher tolerance for salt stress, suggesting that this transcription factor may play a role in abiotic stress. Furthermore, some data suggest that crosstalk between genes involved in abiotic stress and UPR may also exist in plants. On the other hand, UPR is related to programmed cell death (PCD) in plants given that that triggering UPR results in induction of PCD-related genes. This article reviews the latest progress in understanding UPR signaling in plants and analyzes its relationship to key processes in plant physiology.


Assuntos
Arabidopsis/fisiologia , Retículo Endoplasmático/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Estresse Fisiológico/fisiologia
17.
Biol. Res ; 44(1): 75-80, 2011. ilus
Artigo em Inglês | LILACS | ID: lil-591867

RESUMO

Unfolded protein response (UPR) is a signaling mechanism activated by misfolded protein accumulation in the endoplasmic reticulum. It is a widespread process that has been described in organisms ranging from yeasts to mammals. In recent years, our understanding of UPR signaling pathway in plants has advanced. Two transcription factors from Arabidopsis thaliana have been reported to function as the sensor/ transducer of this response (AtbZIP60 and AtbZIP28). They seem to be involved in both heat and biotic stress. Furthermore, overexpression of one of them (AtbZIP60) produces plants with a higher tolerance for salt stress, suggesting that this transcription factor may play a role in abiotic stress. Furthermore, some data suggest that crosstalk between genes involved in abiotic stress and UPR may also exist in plants. On the other hand, UPR is related to programmed cell death (PCD) in plants given that that triggering UPR results in induction of PCD-related genes. This article reviews the latest progress in understanding UPR signaling in plants and analyzes its relationship to key processes in plant physiology.


Assuntos
Arabidopsis/fisiologia , Retículo Endoplasmático/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...